Engineers develop sensors for face masks that help gauge fit: System measures biological and environmental changes, and detects contact between the mask and the wearers skin
Wearing a mask can help prevent the spread of viruses such as SARS-CoV-2, but a mask’s effectiveness depends on how well it fits.
Currently, there are no simple ways to measure the fit of a mask, but a new sensor developed at MIT could make it much easier to ensure a good fit. The sensor, which measures physical contact between the mask and the wearer’s face, can be applied to any kind of mask.
Using this sensor, the researchers analyzed the fit of surgical masks on male and female subjects, and found that overall, the masks fit women’s faces much less closely than they fit men’s faces.
“What we realized by analyzing our collected data from the individuals in the study was that the masks that we use in daily life are not very suitable for female participants,” says Canan Dagdeviren, the LG Career Development Professor of Media Arts and Sciences at MIT and the corresponding author of the study.
The researchers hope that their sensor will help people to find masks that fit them better, and that designers could use it to create masks that fit a wider variety of face shapes and sizes. The sensor can also be used to monitor vital signs such as breathing rate and temperature, as well as environmental conditions such as humidity.
The study is a collaboration between Dagdeviren’s lab; Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability in the Department of Urban Studies and Planning; and Tolga Durak, managing director of MIT’s Environment, Health, and Safety Programs. Jin-Hoon Kim, an MIT postdoc, is the lead author of the paper, which appears today in Nature Electronics.
Source: Read Full Article